Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ADD(s(X), Y) → ADD(X, Y)
ACTIVATE(n__fib1(X1, X2)) → FIB1(activate(X1), activate(X2))
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
FIB(N) → SEL(N, fib1(s(0), s(0)))
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
FIB(N) → FIB1(s(0), s(0))

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ADD(s(X), Y) → ADD(X, Y)
ACTIVATE(n__fib1(X1, X2)) → FIB1(activate(X1), activate(X2))
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
FIB(N) → SEL(N, fib1(s(0), s(0)))
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
FIB(N) → FIB1(s(0), s(0))

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ADD(s(X), Y) → ADD(X, Y)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
ACTIVATE(n__fib1(X1, X2)) → FIB1(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
FIB(N) → SEL(N, fib1(s(0), s(0)))
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
FIB(N) → FIB1(s(0), s(0))
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ADD(x1, x2)  =  ADD(x1)
s(x1)  =  s(x1)

Lexicographic path order with status [19].
Precedence:
s1 > ADD1

Status:
s1: multiset
ADD1: [1]

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__add(x1, x2)  =  n__add(x1, x2)
n__fib1(x1, x2)  =  n__fib1(x1, x2)

Lexicographic path order with status [19].
Precedence:
nadd2 > ACTIVATE1

Status:
nadd2: multiset
ACTIVATE1: [1]
nfib12: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)
activate(x1)  =  x1
n__fib1(x1, x2)  =  n__fib1(x1, x2)
fib1(x1, x2)  =  fib1
add(x1, x2)  =  add
0  =  0
n__add(x1, x2)  =  n__add(x1, x2)

Lexicographic path order with status [19].
Precedence:
fib1 > cons2
fib1 > nfib12
add > s1
add > nadd2

Status:
nadd2: multiset
SEL1: [1]
fib1: multiset
0: multiset
s1: [1]
add: []
cons2: multiset
nfib12: multiset

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.